PyNomaly: Anomaly detection using Local Outlier Probabilities (LoOP).
نویسندگان
چکیده
منابع مشابه
A Hierarchical Framework Using Approximated Local Outlier Factor for Efficient Anomaly Detection
Anomaly detection aims to identify rare events that deviate remarkably from existing data. To satisfy real-world applications, various anomaly detection technologies have been proposed. Due to the resource constraints, such as limited energy, computation ability and memory storage, most of them cannot be directly used in wireless sensor networks (WSNs). In this work, we proposed a hierarchical ...
متن کاملOutlier (Anomaly) Detection Modelling in PMML
PMML is an industry-standard XML-based open format for representing statistical and data mining models. Since PMML does not yet support outlier (anomaly) detection, in this paper we propose a new outlier detection model to foster interoperability in this emerging field. Our proposal is included in the PMML RoadMap for PMML 4.4. We demonstrate the proposed format on one supervised and two unsupe...
متن کاملLocal Outlier Detection with Interpretation
Outlier detection aims at searching for a small set of objects that are inconsistent or considerably deviating from other objects in a dataset. Existing research focuses on outlier identification while omitting the equally important problem of outlier interpretation. This paper presents a novel method named LODI to address both problems at the same time. In LODI, we develop an approach that exp...
متن کاملLocal Anomaly Detection
Anomalies with spatial and temporal stamps arise in a number of applications including communication networks, traffic monitoring and video analysis. In these applications anomalies are temporally or spatially localized but otherwise unknown. We propose a novel graph-based statistical notion that unifies the idea of temporal and spatial locality. This notion lends itself to an elegant character...
متن کاملLOCI: Fast Outlier Detection Using the Local Correlation Integral
Outlier detection is an integral part of data mining and has attracted much attention recently [BKNS00, JTH01, KNT00]. In this paper, we propose a new method for evaluating outlier-ness, which we call the Local Correlation Integral (LOCI). As with the best previous methods, LOCI is highly effective for detecting outliers and groups of outliers (a.k.a. micro-clusters). In addition, it offers the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Open Source Software
سال: 2018
ISSN: 2475-9066
DOI: 10.21105/joss.00845